Franklin and Le Roy: Report on Lightning Rods at Strasbourg
als (draft): Académie royale des sciences, Paris
<May 12, 1780, in French: The Académie has asked us to report on a memoir by M. Barbier on the means of arming the Strasbourg cathedral with lightning rods. Strasbourg is located in the middle of rather flat countryside dominated by the cathedral’s very high spire—so high indeed that no attempt at devising a protective system for so tall a building has ever been made. Its exterior, furthermore, is studded with a large number of iron bars and clamps which add to the danger posed by the frequent storms. Those storms originate southwest of the city, in the Vosges, and proceed in a northeasterly direction. The two crucial issues we shall discuss are the shape given to the lightning rods’ ends and the means by which the lightning’s fire is brought down to earth. On the first question, M. Barbier wisely prefers the rods with pointed ends and suggests that they be gilded so as to preserve them from the weather, and also to create an effect pleasant to the eye. As to the second problem, about which one cannot be too cautious, it should be noted that the spire is divided into three parts. Starting from the top, they are a tier made up of cross, lantern, and crown; then a pyramid in the shape of an octagon consisting of eight small winding stairs and turrets; and finally, resting on the platform, a square construction flanked by an openwork turret containing a staircase. M. Barbier proposes, for the top part, a scaffolding of vertical iron rods off the northeast and southwest sides—those most often hit by storms—to join a “necklace” of horizontal rods just below the crown. From this necklace there would jut four rods descending between the little staircases of the pyramid and corresponding to the four turrets. They would finally follow at a distance the outer walls of the turrets belonging to the lowest part, which rests on the platform. Protruding from the long drop between the cross and the turrets, a number of secondary conductors, five or six feet long and ending in copper-covered joints, would have to be installed for extra security. More of the same should be placed at each angle of the platform. One third of the way down between the platform and the ground there runs a circular gallery, and more rods could be placed there, as well as a protective system extending to the copper roof of the nave. For better safety still, lead washers should be inserted between the various screws. The final step is to connect this protective framework to the ground. M. Barbier’s solution is to establish a tight metallic connection between the copper roof of the Mitre and the three adjacent copper roofs, two of which are well suited to attract lightning since they are garnished with very pointed pyramids. Such a system would provide excellent protection against storms coming from the east. Since that part of the cathedral is so far removed from the tower, M. Barbier plans to give it extra safety by adding still sharper points to those of the pyramids. The next step is to take advantage of the two gutters situated right there, which can be made to communicate, through a leaden pipe, with an already established well. As usual, there will be a duplicate fallback system in case of accident, in the shape of metal rods constructed in the same way as those in the front of the cathedral. Both systems will be joined at the bottom by a thick iron bar pushed at least one foot into the ground at the bottom of the well. Let us add, to complete this description, that M. Barbier proposes to secure the rods by flattening their extremities as well as those of the “necklace,” then drilling a hole through these flattened parts and attaching them to each other by means of a square-headed screw tightly shut by two keys. It is our opinion that M. Barbier’s system would present still greater security if the Mitre were provided with more points and if the descending rods were made thicker. We agree with his observation that the work should proceed from bottom to top. We conclude by praising his plan and expressing the hope that, given the disastrous history of Strasbourg’s tower, it will become a reality. Thus protected, the tower will be a model for the rest of the kingdom and a symbol of the progress accomplished by physics in France when it is considered that only fifteen years ago lightning rods were still viewed as dangerous.>
634419 = 032-373a.html